Ivermectina: ¿Un antiparasitario frente a SARS-CoV-2?




Palabras clave:

Ivermectina, Infecciones por coronavirus, COVID-19, Proteínas de transporte nucleocitoplasmático, Receptores nicotínicos, Farmacología, Ensayo clínico


La capacidad de propagación y letalidad del SARS-CoV-2 en todo el mundo motiva la urgente necesidad de desarrollar una estrategia terapéutica apropiada para controlar los casos de COVID-19. El desarrollo de nuevos fármacos frente a este nuevo virus es apremiante debido a su rápida diseminación. Se han propuesto alternativas paralelas empleando fármacos ya disponibles para fines similares. Esta revisión describe el potencial antiviral de la ivermectina, así como sus mecanismos de acción frente a algunos virus, y discute su probable aplicación contra el SARS-CoV-2.


Los datos de descargas todavía no están disponibles.


Laing R, Gillan V, Devaney E. Ivermectin – old drug, new tricks?. Trends Parasitol. 2017; 33(6): 463-72.

Ashour DS. Ivermectin: from theory to clinical application. Int J Antimicrob Agents. 2019; 54(2): 134-42.

Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. Ivermectin. En: National Institutes of Health, editor. LiverTox: clinical and research information on drug-induced liver injury [Internet]. 2018. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK548921/

Yates DM, Portillo V, Wolstenholme AJ. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol. 2003; 33(11): 1183-93.

Wolstenholme AJ, Rogers AT. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology. 2006; 131(Suppl. 1): S85.

Yin J, Park G, Lee JE, Choi EY, Park JY, Kim T-H, et al. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain. 2015; 138(9): 2553-70.

Song JL, Nigam P, Tektas SS, Selva E. MicroRNA regulation of Wnt signaling pathways in development and disease. Cell Signal. 2015; 27(7): 1380-91.

Yu Y, Kanwar SS, Patel BB, Oh P-S, Nautiyal J, Sarkar FH, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGF-R2) in colon cancer cells. Carcinogenesis. 2012; 33(1): 68-76.

Ashraf S, Prichard R. Ivermectin exhibits potent anti-mitotic activity. Vet Parasitol. 2016; 226: 1-4.

Crump A. Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 2017; 70(5): 495-505.

Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy. 2020; 40(5): 416-37.

Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015; 13(1): 224.

Mastrangelo E, Pezzullo M, De Burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012; 67(8): 1884-94.

Tay MYF, Fraser JE, Chan WKK, Moreland NJ, Rathore AP, Wang C, et al. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res. 2013; 99(3): 301-6.

Sharun K, Dhama K, Patel SK, Pathak M, Tiwari R, Singh BR, et al. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob. 2020; 19(1): 23.

Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012; 443(3): 851-6.

Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, et al. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res. 2018; 159: 55-62.

Raza S, Shahin F, Zhai W, Li H, Alvisi G, Yang K, et al. Ivermectin inhibits Bovine Herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication. Microorganisms. 2020; 8(3): 409.

Nguyen KY, Sakuna K, Kinobe R, Owens L. Ivermectin blocks the nuclear location signal of parvoviruses in crayfish, Cherax quadricarinatus. Aquaculture. 2014; 420(421): 288-94.

Azeem S, Ashraf M, Rasheed MA, Anjum AA, Hameed R. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pak J Pharm Sci. 2015; 28(2): 597-602.

University Mahidol. A phase II/III, randomized, placebo controlled trial of efficacy and safety of ivermectin in children and adult patients with dengue infection [Internet]. National Library of Medicine. 2014. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02045069

Kumar R, Gupta N, Kodan P, Mittal A, Soneja M, Wig N. Battling COVID-19: using old weapons for a new enemy. Trop Dis Travel Med Vaccines. 2020; 6(1): 6.

Yamasmith E, Avirutnan P, Mairiang D, Tanrumluk S, Suputtamongkol Y, Saleh-arong FA, et al. Efficacy and safety of ivermectin against dengue infection: a phase III, randomized, double-blind, placebo-controlled trial [Internet]. En: He 34th Annual Meeting the Royal College of Physicians of Thailand Internal Medicine and One Health, Chonburi, Thailand. 2018. Disponible en: http://www.rcpt.org/abstractdb/

Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 2020; 177: 104760.

Tay MYF, Fraser JE, Chan WKK, Moreland NJ, Rathore AP, Wang C, et al. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res. 2013; 99(3): 301-6.

Götz V, Magar L, Dornfeld D, Giese S, Pohlmann A, Höper D, et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep. 2016; 6(1): 23138.

Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, et al. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res. 2013; 100(3): 662-72.

Słońska A, Cymerys J, Skwarska J, Golke A, Bańbura MW. Influence of importin α/β and exportin 1 on equine herpesvirus type 1 (EHV-1) replication in primary murine neurons. Pol J Vet Sci. 2013; 16(4): 749-51.

Bennett SM, Zhao L, Bosard C, Imperiale MJ. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry. Virology. 2015; 474: 110-6.

Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, et al. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci Rep. 2018; 8(1): 358.

Wang X, Lv C, Ji X, Wang B, Qiu L, Yang Z. Ivermectin treatment inhibits the replication of Porcine circovirus 2 (PCV2) in vitro and mitigates the impact of viral infection in piglets. Virus Res. 2019; 263: 80-6.

Varghese FS, Kaukinen P, Gläsker S, Bespalov M, Hanski L, Wennerberg K, et al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res. 2016; 126: 117-24.

Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(7): 1153-6.

Nguyen C, Burton T, Kuklinski W, Gray M, Foy B. Ivermectin for the Control of West Nile Virus Transmission. Eur J Mol Clin Med. 2015; 2(4–5): 127.

Lee YJ, Lee C. Ivermectin inhibits porcine reproductive and respiratory syndrome virus in cultured porcine alveolar macrophages. Arch Virol. 2016; 161(2): 257-68.

Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the Nucleolus Is a Common Feature of Coronavirus Nucleoproteins, and the Protein May Disrupt Host Cell Division. J Virol. 2001; 75(19): 9345-56.

Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol. 2015; 6.

Surjit M, Lal SK. The nucleocapsid protein of the SARS Coronavirus: structure, function and therapeutic potential. En: Molecular Biology of the SARS-Coronavirus [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 129–51.

Timani KA, Liao Q, Ye L, Zeng Y, Liu J, Zheng Y, et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005; 114(1-2): 23-34.

Rowland RRR, Chauhan V, Fang Y, Pekosz A, Kerrigan M, Burton MD. Intracellular localization of the Severe Acute Respiratory Syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J Virol. 2005; 79(17): 11507-12.

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020; 178: 104787.

Sandler ZJ, Vu MN, Menachery VD, Mounce BC. Novel ionophores active against La Crosse virus identified through rapid antiviral screening. bioRxiv. 2020.

Klotz U, Ogbuokiri JE, Okonkwo PO. Ivermectin binds avidly to plasma proteins. Eur J Clin Pharmacol. 1990; 39(6): 607-8.

Velthuis AJW, Van den Worm SHE, Sims AC, Baric RS, Snijder EJ, Van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010; 6(11): e1001176.

Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Reports. 2020; 19: 100682.

Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol. 2014; 8: 45-53.

Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal. 2020.

Khater S, Das G. Repurposing ivermectin to inhibit the activity of SARS CoV2 helicase: possible implications for COVID 19 therapeutics. OSF Prepr. 2020.

Changeux J-P, Amoura Z, Rey FA, Miyara M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Comptes Rendus Biol. 2020; 343(1): 33-9.

Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and Smoking. Is Nicotine the Hidden Link?. Eur Respir J. 2020.

Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005; 4(8): 673-84.

Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, et al. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Reports. 2020; 7: 658-63.

García-Hernández M, Guerrero-Ramírez G, Castro-Corona MA, Medina-de-la-Garza CE. Inmunomoduladores como terapia adyuvante en la enfermedad infecciosa. Med Univ. 2009; 11(45): 247-59.

Blakley BR, Rousseaux CG. Effect of ivermectin on the immune response in mice. Am J Vet Res. 1991; 52(4): 593-5.

Zheng HJ, Piessens WF, Tao ZH, Cheng WF, Wang SH, Cheng SH, et al. Efficacy of ivermectin for control of microfilaremia recurring after treatment with diethylcarbamazine. I. Clinical and parasitologic observations. Am J Trop Med Hyg. 1991; 45(2): 168-74.

Alvinerie M, Escudero E, Sutra JF, Eeckhoutte C, Galtier P. The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res. 1998; 29(2): 113-8.

González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans: a mini-review. AAPS J. 2008; 10(1): 42-6.

Okonkwo PO, Ogbuokiri JE, Ofoegbu E, Klotz U. Protein binding and ivermectin estimations in patients with onchocerciasis. ClinPharmacol Ther. 1993; 53(4): 426-30.

Whitworth JAG, Hay CRM, McNicholas AM, Morgan D, Maude GH, Taylor DW. Coagulation abnormalities and ivermectin. Ann Trop Med Parasitol. 1992; 86(3): 301-5.

Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo). 2020.

Croci R, Bottaro E, Chan KWK, Watanabe S, Pezzullo M, Mastrangelo E, et al. liposomal systems as nanocarriers for the antiviral agent ivermectin. Int J Biomater. 2016; 2016: 1-15.

Rueda A. Fármacos para COVID-19 sin respaldo calan hondo en Latinoamérica [Internet]. SciDev.Net. 2020. Disponible en: https://bit.ly/2zydu1K

Parisi K. Perú da impulso a hidroxicloroquina e ivermectina como tratamiento para COVID-19. Cable News Network CNN. 2020.

Podcast RPP. Coronavirus en Perú: Experiencia médica funcionó en pacientes peruanos [Audiogalería] [Internet]. RPP. 2020. Disponible en: https://bit.ly/3dUwSUO

Gestión R. Hospital de San Juan de Lurigancho elabora Ivermectina para tratamiento a pacientes COVID-19 [Internet]. Gestión Perú. 2020. Disponible en: https://bit.ly/2BjWOMA

Solomon S. FDA Letter to Stakeholders: do not use ivermectin intended for animals as treatment for COVID-19 in Humans. FDA’s Center for Veterinary Medicine. 2020.

Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 2018; 8(2): 317-31.

Jang Y, Shin JS, Yoon Y-S, Go YY, Lee HW, Kwon OS, et al. Salinomycin inhibits Influenza Virus infection by disrupting endosomal acidification and viral matrix protein 2 function. J Virol. 2018; 92(24).

Frick D, Lam A. understanding helicases as a means of virus control. Curr Pharm Des. 2006; 12(11): 1315-38.

Ulrich H, Pillat MM. CD147 as a Target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Reports. 2020; 16(3): 434-40.

ClinicalTrials.gov. Ivermectin and COVID-19 [Internet]. National Library of Medicine. 2020. Disponible en: https://clinicaltrials.gov/ct2/results?term=ivermectin&cond=Covid-19

Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turkish J Med Sci. 2020; 50(Suppl. 1): 611-9.




Cómo citar

Vega-Fernández JA, Suclupe-Campos DO, Aguilar-Gamboa FR. Ivermectina: ¿Un antiparasitario frente a SARS-CoV-2?. Horiz Med [Internet]. 3 de diciembre de 2021 [citado 30 de marzo de 2023];21(4):e1276. Disponible en: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/1276



Artículos de revisión