Microbiota and sepsis

Authors

DOI:

https://doi.org/10.24265/horizmed.2022.v22n2.13

Keywords:

Sepsis, Gastrointestinal microbiome, Probiotics, Fecal microbiota transplantation

Abstract

Sepsis is the body’s overwhelming response to an infection. It is characterized by damage to the organs that may be irreversible and life-threatening. The gastrointestinal microbiome regulates a series of homeostatic mechanisms in the host, such as the immune function and the protection of the intestinal barrier, and the loss of normal intestinal microbial structure and function. Moreover, it has been associated with the onset of diseases of diverse characteristics. Recent evidence has shown a link between the gastrointestinal microbiome and sepsis: the alteration of the gastrointestinal microbiome increases the susceptibility to sepsis through various mechanisms, including the expansion of pathogenic intestinal bacteria, marked pro-inflammatory response and decreased production of beneficial microbial products such as short-chain fatty acids. Once sepsis is established, the alteration of the gastrointestinal microbiome worsens and the susceptibility to end-organ dysfunction increases. There is limited evidence that microbiome-based therapies, which include probiotics and selective digestive decontamination, can decrease the risk of sepsis and improve its outcomes in selected patient populations. However, safety concerns generate limited acceptance. While much of the evidence linking the gastrointestinal microbiome and sepsis has been established in preclinical studies, clinical evidence is still necessary in many areas.

Downloads

Download data is not yet available.

References

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017; 43: 304-77.

Kadri SS, Rhee C, Strich JR, Morales MK, Hohmann S, Menchaca J, et al. Estimating ten-year trends in septic shock incidence and mortality in United States Academic Medical Centers using clinical data. Chest. 2017; 151(2): 278-85.

Cabrera-Pérez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: rethinking the germ theory of disease. Exp Biol Med. 2017; 242(2): 127-39.

Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011; 332(6032): 974-7.

Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016; 4(1): 59-72.

Kitsios GD, Morowitz MJ, Dickson RP, Huffnagle GB, Mcverry BJ, Morris A. Dysbiosis in the ICU: Microbiome science coming to the bedside. J Crit Care. 2017; 38: 84-91.

Ackerman J. The ultimate social network. Sci Am. 2012; 306(6): 36-43.

Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation. Cell. 2015; 157(1): 121-41.

Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta. 2017; 1863(10): 2574-83.

Lobo LA, Benjamim CF, Oliveira AC. The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunol. 2016; 5(7): e90.

Qin X, Sheth SU, Sharpe SM, Dong W, Lu Q, Xu D, et al. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function. Shock. 2011; 35(3): 275-81.

Anderson DK, Liang JW, Lord C. Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disordes. Physiol Behav. 2017; 176(5): 139-48.

Sluis MVD, Koning BAED, Bruijn ACJMD, Velcich A, Meijerink JPP, Goudoever JBV, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006; 131(1): 117-29.

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012; 489(7415): 231-41.

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-23.

Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016; 535(7610): 65-74.

Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017; 17(4): 219-32.

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4): 783-801.

Lankelma JM, Vught LAV, Belzer C, Schultz MJ, Poll TVD, de Vos WM, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med. 2017; 43(1): 59-68.

Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med. 2013; 5(10): 1465-83.

Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016; 16(10): 639-49.

Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013; 10(6): 352-61.

Wang C, Li Q, Ren J. Microbiota-immune interaction in the pathogenesis of gut-derived infection. Front Immunol. 2019; 10: 1873.

Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016; 274(1): 330-53.

Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016; 535(7610): 75-84.

Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A. 2011; 108(21): 8743-8.

Andreu-Ballester JC, Tormo-Calandín C, Garcia-Ballesteros C, Pérez-Griera J, Amigó V, Almela-Quilis A, et al. Association of γδ T cells with disease severity and mortality in septic patients. Clin Vaccine Immunol. 2013; 20(5): 738-46.

Wei M, Shinkura R, Doi Y, Maruya M, Fagarasan S, Honjo T. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol. 2011; 12(3): 264-70.

Li Q, Wang C, Tang C, He Q, Li J. Lymphocyte depletion after alemtuzumab induction disrupts intestinal fungal microbiota in cynomolgus monkeys. Transplantation. 2014; 98(9): 951-9.

Blaser AR, Poeze M, Malbrain MLNG, Björck M, Straaten HMOV, Starkopf J. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicentre study. Intensive Care Med. 2013; 39(5): 899-909.

Piton G, Capellier G. Biomarkers of gut barrier failure in the ICU. Curr Opin Crit Care. 2016; 22(2): 152-60.

Yoseph BP, Klingensmith NJ, Liang Z, Breed ER, Burd EM, Mittal R, et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock. 2016; 46(1): 52-9.

Qin X, Caputo FJ, Xu DZ, Deitch EA. Hydrophobicity of mucosal surface and its relationship to gut barrier function. Shock. 2008; 29(3): 372-6.

McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016; 1(4): e00199-16.

Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016; 17(5): 505-13.

Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr Opin Crit Care. 2016; 22(4): 347-53.

Lamarche MG, Wanner BL, Crépin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev. 2008; 32(3): 461-73.

Zaborin A, Defazio JR, Kade M, Kaiser BLD, Belogortseva N, Camp DG, et al. Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob Agents Chemother. 2014; 58(2): 966-77.

Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog. 2007; 3(3): e35.

Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio. 2014; 5(5): e01361-14.

Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015; 6: 6734.

Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. BMJ. 2019; 366: l4609.

Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019; 394(10196): 420-31.

Bacán L, Ducatenzeiler L, Bangher MdC, Barcelona L, Cornistein W, Daciuk L. Intersociety guidelines for diagnosis, treatment and prevention of Clostridioides difficile infections. Medicina (B Aires). 2020; 80(Suppl. 1): 1-32.

Waldbaum C, Antelo P, Sordá J. Infección severa y complicada por Clostridium difficile resuelta con trasplante de microbiota. Acta Gastroenterol Latinoam. 2017; 47(3): 211-5.

Li Q, Wang C, Tang C, He Q, Zhao X, Li N, et al. Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation: a case report. Crit Care. 2015; 19(1): 37.

Wei Y, Yang J, Wang J, Yang Y, Huang J, Gong H, et al. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care. 2016; 20(1): 332.

Manzanares W, Lemieux M, Langlois PL, Wischmeyer PE. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care. 2016; 20: 262.

Zeng J, Wang CT, Zhang FS, Qi F, Wang SF, Ma S, et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intensive Care Med. 2016; 42(6): 1018-28.

Price R, MacLennan G, Glen J. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197.

Published

2022-06-30

How to Cite

1.
Vélez PA, López F, Montalvo M, Aguayo S, Velarde G, Jara FE, Torres P, Torres D, Vélez JL. Microbiota and sepsis. Horiz Med [Internet]. 2022Jun.30 [cited 2025May2];22(2):e1692. Available from: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/1692

Issue

Section

Review article

Most read articles by the same author(s)