Inmunología del cáncer I: bases moleculares y celulares de la respuesta inmune antitumoral

Autores/as

DOI:

https://doi.org/10.24265/horizmed.2018.v18n3.11

Palabras clave:

Sistema inmunológico, Procesos del sistema inmunológico, Inmunovigilancia, Cáncer

Resumen

Significativos recursos materiales, financieros y humanos se dedican a la investigación de la biología del cáncer. La validación de biomarcadores, el desarrollo de novedosos métodos para el diagnóstico y la terapia, la implementación de programas de pesquisa a nivel poblacional y la promoción de estilos de vida saludables han impactado positivamente en la prevención y control de este grupo de enfermedades. Sin embargo, el cáncer sigue siendo un problema de salud mundial, entre otros factores, por la compleja relación que se establece entre el sistema inmune del hospedero y las células neoplásicas. Está demostrado que los mecanismos efectores que posee el sistema inmune permiten detectar y eliminar las células transformadas. Sin embargo, estos mismos mecanismos promueven la evolución somática de los tumores, al seleccionar variantes celulares resistentes a la acción de la inmunidad. Esta interacción ocurre fundamentalmente en el microambiente tumoral y ha sido conceptualizada como inmunoedición tumoral. Lo anterior sustenta la racionalidad de la inmunoterapia, la que buscar reforzar la inmunidad antitumoral, a la vez que bloquea los mecanismos de evasión a la inmunovigilancia. Con este trabajo de revisión iniciamos una serie de tres artículos que, en este orden, recorrerán las bases moleculares y celulares de la respuesta inmune antitumoral, presentarán los fundamentos de la biología tumoral y, finalmente, abordarán las implicaciones de la compleja relación entre el sistema inmune y las neoplasias para la inmunoterapia en cáncer.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget. 2017; 8(4):7175-80.

Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011; 29:235-71.

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagés C, et.al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006; 313:1960-64.

Fridman WH, Pagès F, Sautès-Fridman C and Jérôme G. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer. 2012; 12:298-306

Gardner A, Ruffell B. Dendritic Cells and cancer immunity. Trends Immunology. 2016; 37(12):855-865.

Chen DS and Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1):1-10.

Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et. al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014; 232:199-209

Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, et. al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol. 2018; 31(2):214-234.

Mel Greaves and Maley CC. Clonal evolution in cancer. Nature. 2012; 481(7381): 306-313.

Yao Y and Dai W. Genomic Instability and Cancer. J Carcinog Mutagen. 2014; 5:1000165.

Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali S, Ennis R, et. al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine. 2017; 9:34-48.

Khong HT and Restifo N. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nature Immunology. 2002; 3:999-1005.

Efremova M, Rieder D, Klepsch V, Charoentong P, Finotello F, Hackl H, et. al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nature Communications. 2018; 9.

Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007; 25: 267-96.

Gallucci S and Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001; 13(1):114-19.

Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, et. al. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol. 2015; 6:402.

Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016; 35(46):5931-41.

Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013; 37(4): 284-91.

Treanor B. B-cell receptor: from resting state to activate. Immunology. 2012; 136(1): 21-27.

Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural Biology of the T-cell Receptor: Insights into Receptor Assembly, Ligand Recognition, and Initiation of Signaling. Cold Spring Harb Perspect Biol. 2010; 2(4): a005140.

Sokol CL and Luster AD. The Chemokine System in Innate Immunity. Cold Spring Harb Perspect Biol. 2015; 7(5): a016303.

Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends in Immunology. 2004; 25(2):75-84.

O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, et. al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 2012; 209(10):1869-82.

Radiloff DR, Rinella ES, Threadgill DW. Modeling cancer patient populations in mice: Complex genetic and environmental factors. Drug Discovery Today: Disease Models. 2007; 4(2): 83-88.

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, et. al. Classification of current anticancer immunotherapies. Oncotarget. 2014; 5(24):12472-508.

Belkaid Y and Hand T. Role of the microbiota in immunity and inflammation. Cell. 2014; 157(1): 121-41.

Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annual Review Immunology. 2014; 32: 609-34.

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009; 22(2): 240-73.

Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms. Immunology Research. 2014; 59(1-3): 12-22.

Rahman AH, Taylor DK, Turka LA. The contribution of direct TLR signaling to T cell responses. Immunolology Research. 2009; 45(1): 25-36

Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009; 21(4): 317-37.

O'Neill LA., Golenbock D., Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol. 2013; 13: 453-60.

Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, et. al. Scavenger Receptor Structure and Function in Health and Disease. Cells. 2015; 4(2): 178-201.

Tsoni SV, Brown GD. beta-Glucans and dectin-1. Ann N Y Acad Sci. 2008;1143:45-60.

Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol. 2003; 40(7):423-9.

Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like Receptors in Microbial Recognition and Host Defense. Immunol Rev. 2009; 227(1): 106-28.

Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology. 2009; 10: 241-47.

Tonegawa S. Somatic generation of antibody diversity. Nature. 1983; 302: 575-81.

Jung D, Alt FW. Unraveling V(D)J Recombination: Insights into Gene Regulation. Cell. 2004; 116(2): 299-311.

Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology. 2014; 14: 377-91.

Pelanda R, Torres RM. Central B-Cell Tolerance: Where Selection Begins. Cold Spring Harb Perspect Biol. 2012; 4(4): a007146.

Hsieh CS, Lee H, Lio CJ. Selection of regulatory T cells in the thymus. 2012; Nature Reviews Immunology 12: 157-16.

Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends in Immunology. 2016; 37(11): 803-11.

Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews Immunology. 2011; 11: 823-36.

Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nature Reviews Immunology. 2015; 15: 203-16.

Maddur MS, Kaveri SV, Bayry J. Basophils as antigen presenting cells. Trends Immunol. 2010; 31(2):45-8.

Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human gamma-delta T Cells. Science. 2005; 309(5732): 264-68.

Blum JS, Wearsch PA, Cresswell P. Pathways of Antigen Processing. Annu Rev Immunol. 2013; 31: 443-73.

Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nature Reviews Immunology. 2012; 12: 557-69.

Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nature Reviews Immunology. 2001; 1: 126–34.

Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, et. al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals Oncology. 2017; 28(suppl-12): xii44-xii55.

Dinarello CA. Historical Review of Cytokines. Eur J Immunol. 2011; 37(Suppl 1): S34-S45.

Ozaki K, Leonard WJ. Cytokine and Cytokine Receptor Pleiotropy and Redundancy. The Journal of Biological Chemistry. 2002; 277: 29355-358.

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014; 32: 659-702.

Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology. 2007; 7: 678-89.

Schroeder HW, Cavacini L. Structure and Function of Immunoglobulins. J Allergy Clin Immunol. 2010; 125(202): S41-S52.

Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining Natural Antibodies. Front Immunol. 2017; 8: 872.

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nature Reviews Immunology. 2015; 15: 160-171

Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol. 2009; 129(7): 1628-42.

Lünemann A, Lünemann JD, Münz C. Regulatory NK-cell functions in inflammation and autoimmunity. Mol Med. 2009; 15(9-10): 352-58.

Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016; 139(5): 976-85.

Qian C, Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin Immunol. 2018; 35: 3-11.

Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014; 40: 642-56.

Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014; 33(10):1104-116.

Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994; 12: 991-1045.

Litman GW, Rast JP, Fugmann SD. The origins of vertebrate adaptive immunity. Nature Reviews Immunology. 2010; 10:543-53.

Luckheeramn RV, Zhou R, Verma AD, Xia B. CD4+T cells: differentiation and functions. Clin Dev Immunol. 2012; 2012: 925135.

Halle S, Halle O, Försterv R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends in Immunology. 2017; 38(6): 432-443.

Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nature Reviews Immunology. 2008; 8: 523-32.

den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen presenting cells, T cells and B cells. Immunol Lett. 2014; 162(2 Pt B):103-12.

Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. 2007. EMBO Rep. 8(12): 1142-148.

Sharpe AH, Abbas AK. T-Cell costimulation: biology, therapeutic potential, and challenges. N. Engl. J. Med. 2006; 355: 973-75.

Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, et. al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002; 16(6): 769-77.

Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology. 2018; 18: 153-67.

Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer. 2018; 118: 9-16.

Tubo NJ, Jenkins MK. TCR signal quantity and quality in CD4+ T cell differentiation. Trends in Immunology. 2014; 35(12): 591-96.

Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 2010; 28: 445-89.

Rodríguez-Pinto D. B cells as antigen presenting cells. Cellular Immunology. 238(2): 67-75

Shishido SN, Varahan S, Yuan K, Li X, Flemingd SD. Humoral innate immune response and disease. Clin Immunol. 2012; 144(2): 142-58.

Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell. Mol. Immunol. 2009; 6(1): 15-25.

Rogers LM1, Veeramani S, Weiner GJ. Complement in monoclonal antibody therapy of cancer. Immunol Res. 2014; 59(1-3): 203-10.

Hubert P, Amigorena S. Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy. Oncoimmunology. 2012; 1(1): 103-105.

Viganò S, Perreau M, Pantaleo G, Harari A. Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Journal of Immunology Research. 2012; Article ID 485781

##submission.downloads##

Publicado

2018-09-06

Cómo citar

1.
de León J, Pareja A. Inmunología del cáncer I: bases moleculares y celulares de la respuesta inmune antitumoral. Horiz Med [Internet]. 6 de septiembre de 2018 [citado 26 de abril de 2024];18(3):80-9. Disponible en: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/661

Número

Sección

Artículos de revisión