Inmunología del cáncer II: bases moleculares y celulares de la carcinogénesis


  • Joel de León Universidad de San Martín de Porres, Facultad de Medicina Humana, Instituto de Investigación, Centro de Investigación de Infectología e Inmunología. Lima, Perú
  • Arturo Pareja Universidad de San Martín de Porres, Facultad de Medicina Humana, Instituto de Investigación, Centro de Investigación de Infectología e Inmunología. Lima, Perú



El desarrollo tecnológico de las últimas dos décadas aplicado a la investigación científica preclínica y clínica, ha permitido expandir significativamente los conocimientos acerca de la biología de las células neoplásicas. La caracterización de las alteraciones genéticas y epigenéticas que sustentan la carcinogénesis, la subclasificación molecular de los tumores, la comprensión de las interacciones que establecen las células neoplásicas con otras poblaciones celulares en el microambiente tumoral, así como la descripción de las bases moleculares que permiten explicar la influencia de factores como ejercicio, la dieta y la composición de la microbiota en la progresión tumoral, han contribuido a sustentar la relevancia del tratamiento de precisión en cáncer. Este trabajo revisa los llamados sellos del cáncer y sus cualidades habilitantes, o sea, aquellas propiedades inherentes a las células neoplásicas que le permiten evadir los mecanismos intrínsecos y extrínsecos que controlan la carcinogénesis. Con este trabajo damos continuidad a la serie sobre inmunología del cáncer que iniciamos con la presentación de las bases moleculares y celulares de la respuesta inmune antitumoral y que, finalmente, abordará la manipulación de la relación entre el sistema inmune y las neoplasias como estrategia de terapia para el cáncer.



Los datos de descargas todavía no están disponibles.


1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235-71.

2. Organización Mundial de la Salud. Global Cancer Observatory [Página principal en internet], Francia: Organización Mundial de la Salud; 2018 Disponible en:

3. American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society; 2017. Disponible en:

4. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes?. Front Immunol. 2018 Jan 10;8:1960.

5. Envejecimiento y salud. Ginebra: Organización Mundial de la Salud; c2018 Disponible en:

6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 07;100(1):57-70.

7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 04;144(5):646-74.

8. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012 Mar 20;21(3):309-22.

9. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan 18;481(7381):306-13.

10. Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, et. al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene. 2008 Mar 27;27(14):1993-2003.

11. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce- Pagés C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006 Sep 29;313(5795):1960-4.

12. Junttila MR, de Sauvage FJ. Influence of tumour micro- environment heterogeneity on therapeutic response. Nature. 2013 Sep 19;501(7467):346–54.

13. Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, et al. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 2015;15(8):943–54.

14. Harisi R, Jeney A. Extracellular matrix as target for antitumor therapy. Onco Targets Ther. 2015;8:1387-98.

15. Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines. 2017 Jun;5(2):34.

16. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci. 2017 Oct;108(10):1939–46.

17. Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett. 2018 Oct;16(4):4105-13.

18. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018 Feb 19;17(1):58.

19. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015 Apr;5(4):a006098.

20. Sangwan V, Park M. Receptor tyrosine kinases: role in cancer progression. Curr Oncol. 2006 Oct;13(5):191-3.

21. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003 Dec; 22(4):337-58.

22. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13(8):559-71.

23. Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA. CD117/c-kit in cancer stem cell-mediated progression and therapeutic resistance. Biomedicines. 2018 Mar 08;6(1):31-50.

24. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5546-53.

25. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014 Nov;120(22):3446-56.

26. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006 Jan; 18(1):77-82.

27. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018 Feb 19;17(1):36.

28. Batson S, Mitchell SA, Windisch R, Damonte E, Munk VC, Reguart N. Tyrosine kinase inhibitor combination therapy in first-line treatment of non-small-cell lung cancer: systematic review and network meta- analysis. Onco Targets Ther. 2017 May 05;10:2473-82.

29. Roskoski Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014 Jan;79:34-74.

30. Gutierrez C, Schiff R. HER 2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011 Jan;135(1):55-62.

31. Ocaña A, Díez-González L, Esparís-Ogando A, Montero JC, Amir E, Pandiella A. Neuregulin expression in solid tumors: prognostic value and predictive role to anti-HER3 therapies. Oncotarget. 2016 Jul 19;7(29):45042-51.

32. Wang X, Goldstein D, Crowe PJ, Yang JL. Next-generation EGFR/ HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence. Onco Targets Ther. 2016 Sep 06;9:5461-73.

33. Takeda M, Okamoto I, Nishimura Y, Nakagawa K. Nimotuzumab, a novel monoclonal antibody to the epidermal growth factor receptor, in the treatment of non-small cell lung cancer. Lung Cancer (Auckl). 2011 Oct 13;2:59-67.

34. Poston G, Adam R, Xu J, Byrne B, Esser R, Malik H, et al. The role of cetuximab in converting initially unresectable colorectal cancer liver metastases for resection. Eur J Surg Oncol. 2017 Nov; 43(11):2001-11.

35. Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol. 2017 Nov 28; 6:31.

36. Crombet Ramos T, Rodríguez PC, Neninger Vinageras E, Garcia Verdecia B, Lage Davila A. CIMAvax EGF (EGF-P64K) vaccine for the treatment of non-small-cell lung cancer. Expert Rev Vaccines. 2015;14(10):1303-11.

37. Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, et. al. Safety and immunogenicity of a human epidermal growth factor receptor 1 (HER1)-based vaccine in prostate castration-resistant carcinoma patients: a dose-escalation Phase I study trial. Front Pharmacol. 2017 May 10;8:263.

38. Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017 Sep 07;170(6):1062-78.

39. Du W, Searle JS. The Rb pathway and cancer therapeutics. Curr Drug Targets. 2009 Jul;10(7):581-9.

40. Zhou W, Zhang J, Marcus AI. LKB1 tumor suppressor: Therapeutic opportunities knock when LKB1 is inactivated. Genes Dis. 2014 Sep 01;1(1):64-74.

41. Muller PAJ, Vousden KH. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17.

42. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. PTEN: multiple functions in human malignant tumors. Front Oncol. 2015 Feb 16;5:24.

43. Ortega-Molina A, Serrano M. PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab. 2013 Apr;24(4):184-9.

44. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001 Oct 05;107(1):67-77.

45. Mason M, Schuller A, Skordalakes E. Telomerase structure function. Curr Opin Struct Biol. 2011 Feb;21(1):92-100.

46. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016 Jun 20;8(1):69.

47. Ivancich M, Schrank Z, Wojdyla L, Leviskas B, Kuckovic A, Sanjali A, Puri N. treating cancer by targeting telomeres and telomerase. Antioxidants (Basel). 2017 Feb 19;6(1):15.

48. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017 Oct 13;35(43):5768-75.

49. Warburg O. On the origin of cancer cells. Science. 1956 Feb 24; 123(3191):309-14.

50. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008 Feb;18(1):54-61.

51. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029-33.

52. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells?. Trends Biochem Sci. 2016 Mar;41(3):211-8.

53. Sai KKS, Zachar Z, Bingham PM, Mintz A. Metabolic PET imaging in oncology. AJR Am J Roentgenol. 2017 Aug;209(2):270-6.

54. Nagarajan A, Malvi P, Wajapeyee N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer. 2016 Jul;2(7):365-77.

55. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget. 2018 May 04;9(34):23780-823.

56. Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer. Biochim Biophys Acta. 2011 Nov;1807(11):1432-43.

57. Waitkus MS, Diplas BH, Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018 Aug 13;34(2):186-95.

58. Wong CC, Qian Y, Yu J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene. 2017 Jun 15;36(24):3359-74.

59. Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int J Mol Sci. 2018 Feb;19(2):e594.

60. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, et. al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res. 2013 Apr 01;19(7):1858-72.

61. Hilchey SP, Hyrien O, Mosmann TR, Livingstone AM, Friedberg JW, Young F, et. al. Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a "vaccinal effect" of rituximab. Blood. 2009 Apr16;113(16):3809-12.

62. Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know?. Br J Cancer. 2009 Mar24;100(6):865-9.

63. Zia MK, Rmali KA, Watkins G, Mansel RE, Jiang WG. The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Int J Mol Med. 2007 Oct; 20(4):605-11.

64. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis. Genes Cancer. 2011 Dec;2(12):1097-1105.

65. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal. 2016 Dec;10(4):347-54.

66. Chen Z, Xu XH, Hu J. Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma. 2016;63(2):173-82.

67. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015 Apr 03;348(6230):74-80.

68. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, et. al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med. 2008 Jan;14(1):28-36.

69. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et. al. Chemokine nitration prevents intratumoral infiltration of antigen- specific T cells. J Experiment Medicine. 2011 Sep 26;208(10):1949-62.

70. Culy C. Bevacizumab: antiangiogenic cancer therapy. Drugs Today (Barc). 2005 Jan;41(1):23-36.

71. Jung KH, Yan HH, Fang Z, Son MK, Lee H, Hong S, et al. HS-104, a PI3K inhibitor, enhances the anticancer efficacy of gemcitabine in pancreatic cancer. Int J Oncol. 2014 Jul;45(1):311-21.

72. Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX. Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev. 2007 Dec;26(3-4):705-15.

73. Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C, et. al. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015 Jan 01;6(1):570-83.

74. Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017 Jul;11(7):781-91.

75. Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des. 2015;21(10):1301-10.

76. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et. al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005 Dec 08;438(7069):820-7.

77. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et. al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015 Nov05;527(7576):100–4.

78. Tao MH, Shu XO, Ruan ZX, Gao YT, Zheng W. Association of overweight with breast cancer survival. Am J Epidemiol. 2006 Jan 15;163(2):101-7.

79. Quail DF, Olson OC, Bhardwaj P, Walsh LA, Akkari L, Quick ML, et. al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat Cell Biol. 2017 Aug;19(8):974-87.

80. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017 Nov;16(11):2598-2608.

81. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017 Jul28;357(6349):409–13.

82. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009 Feb1;69(3):1221–9.

83. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?. Lancet. 2001 Feb 17; 357(9255):539-45.

84. Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008 Feb;18(1):3-10.

85. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell. 2009 Nov 13;139(4):693-706.

86. Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008 Aug 28;267(2):204-15.

87. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009 Apr 15;182(8): 4499-506.




Cómo citar

de León, J., & Pareja, A. (2019). Inmunología del cáncer II: bases moleculares y celulares de la carcinogénesis. Horizonte Médico (Lima), 19(2), 84–92.



Artículos de revisión