Forecast accuracy of COVID-19 spread dynamics in Peru
DOI:
https://doi.org/10.24265/horizmed.2020.v20n3.06Keywords:
Prognosis, Coronavirus infections, CoronavirusAbstract
Objective: To analyze the forecast accuracy of Brown's exponential smoothing model to predict the spread of COVID-19 in Peru from March 6 to May 30, 2020. Materials and methods: A descriptive study based on a time series analysis conducted from March 6 to May 30, 2020 in Peru. The information on the number of positive cases of COVID-19 (155,671 people) was used. The prediction method was Brown's exponential smoothing model, which consists in carrying out two exponential smoothings from which the forecast is calculated: the time series values were used in the first smoothing, and the first attenuation series was used in the second one. Accuracy measures used in the research were: mean forecast error (MFE), mean squared error (MSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The coefficient of determination (R2) was used to establish if the data fits the evaluated model. Results: MFE was 156.7, MSE was 506461.3, MAD was 450.6 and MAPE was 9.03 %. R2 accounted for 0.8078. Conclusions: Accuracy error or MAPE was 9.03 % and R2 was 0.8078, which indicates that the data fits by 80.78 % to the evaluated model.
Downloads
References
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARSCoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020; 382(12): 1177-9.
Xu X, Wu X, Jiang X, Xu K, Ying L, Ma C, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020; 368: m606.
Singh RK, Rani M, Bhagavathula AS, Sah R, Rodriguez-Morales AJ, Kalita H, et al. Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced Autoregressive Integrated Moving Average (ARIMA) model. JMIR Public Health Surveill. 2020; 6(2): e19115.
Tang K, Huang Y, Chen M. Novel Coronavirus 2019 (Covid-19) epidemic scale estimation: topological network-based infection dynamic model. medRxiv. 2020.
Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020.
McCall B. COVID-19 and artificial intelligence: protecting healthcare workers and curbing the spread. Lancet. 2020.
Song PX, Wang L, Zhou Y, He J, Zhu B, Wang F, et al. An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China. medRxiv. 2020.
Moftakhar L, Seif M. The exponentially increasing rate of patients infected with COVID-19 in Iran. Arch Iran Med. 2020; 23(4): 235-8.
World Health Organization. Novel coronavirus (2019-nCoV) [Internet]. 2020. Disponible en: https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/situation-reports
World Health Organization. Coronavirus disease (COVID-19) [Internet]. 2020. Disponible en: https://www.who.int/ emergencies/diseases/novel-coronavirus-2019.
Instituto Nacional de Salud y Centro Nacional de Epidemiología, Prevención y Control de Enfermedades del Ministerio de Salud del Perú. Sala situacional COVID-19 Perú [Internet]. 2020. Disponible en: https://covid19.minsa.gob.pe/sala_situacional.asp.
Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020; (5): 553-8.
Liu Y, Gayle A, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020; 27(2).
Pirouz B, Shaffiee Haghshenas S, Piro P. Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability. 2020; 12(6): 2427.
Fanoodi B, Malmir, B, Firouzi F. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models. Comput Biol Med. 2019; 113: 103415.
Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci Total Environ. 2020; 729: 138817.
Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011; 11: 218.
Elevli S, Uzgören N, Bingöl D, Elevli B. Drinking water quality control: control charts for turbidity and pH. J Water Sanit Hyg Dev. 2016; 6(4): 511-8.
Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief. 2020; 29: 105340.
IBM. Modelos personalizados de suavizado exponencial [Internet]. 2010. Disponible en: https://www.ibm.com/support/ knowledgecenter/es/SSLVMB_sub/statistics_mainhelp_ddita/ spss/trends/idh_idd_exp_smooth_crit.html
Díaz Pinzón JE. Precisión del pronóstico de la propagación del COVID-19 en Colombia. Repert Med Cir. 2020.
Betancourt DF. Medición del error en pronósticos de demanda [Internet]. 2016. Disponible en: https://ingenioempresa.com/ medicion-error-pronostico/
Coutin MG. Pronósticos de mortalidad por enfermedades no transmisibles seleccionadas. Rev Cubana Hig Epidemiol. 2008; 46(3).
Lixiang L, Yang Z, Dang Z, Meng C, Huang J, Meng H, et al. Propagation analysis and prediction of the COVID-19. Infect Dis Model. 2020; 5: 282-92.
Zhang KK, Xie L, Lawless L, Zhou H, Gao G, Xue C. Characterizing the transmission and identifying the control strategy for COVID-19 through epidemiological modeling. medRxiv. 2020.
Modelos de pronóstico. Suavización Exponencial Doble Método de Brown Ajuste a la Tendencia [Internet]. 2019. Disponible en: http://modelosdepronosticos.info/metodo_de_suavizacion_ exponencial_doble_metodo_de_brown.html
Johns Hopkins University. Coronavirus resource center [Internet]. 2020. Disponible en: https://coronavirus.jhu.edu/map.html
Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, TaylorPhillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020.
Brauer F, Castillo-Chavez C, Feng Z. Mathematical Models in Epidemiology. 1st ed. New York: Springer; 2019.
Mikler AR, Venkatachalam S, Abbas K. Modeling infectious diseases using global stochastic cellular automata. J Biol Syst. 2005; 13(4): 421-39.
Velasco-Hernandez JX, Leite MC. A model for the A(H1N1) epidemic in Mexico, including social isolation. Salud Pública Mex. 2011; 53(1): 40-7.
Heesterbeek JA. A brief history of R0 and a recipe for its calculation. Acta Biotheor. 2002; 50(3): 189-204.
Manrique FG, Agudelo CA, González VM, Gutiérrez O, Téllez CF, Herrera G. Modelo SIR de la pandemia de COVID-19 en Colombia. Rev Salud Pública. 2020; 22(1): e185977.
Batista M. Estimation of the final size of the second phase of coronavirus epidemic by the logistic model. MedRxiv. 2020.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Horizonte Médico (Lima)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Horizonte Médico (Lima) (Horiz. Med.) journal’s research outputs are published free of charge and are freely available to download under the open access model, aimed at disseminating works and experiences developed in biomedical and public health areas, both nationally and internationally, and promoting research in the different fields of human medicine. All manuscripts accepted and published in the journal are distributed free of charge under the terms of a Creative Commons license – Attribution 4.0 International (CC BY 4.0).