Plasma biomarkers: new non-invasive tests in the early diagnosis of colorectal cancer?
DOI:
https://doi.org/10.24265/horizmed.2022.v22n3.12Keywords:
Early Detection of Cancer, Colorectal Neoplasms, BiomarkersAbstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the United States and Europe. In Peru, it ranks fourth for both incidence and mortality. Colonoscopy is the gold standard for screening tests, showing high sensitivity and specificity
to identify polyps and cancer (> 98 %). However, it is an invasive procedure, which should be repeated at certain intervals, is expensive, and has low compliance rates and a perforation risk of 1 per 1,000 to 10,000. These limitations make it useless as an early detection tool in terms of implementation costs in many countries. An alternative is the use of plasma tumor biomarkers, which are molecular products metabolized and secreted by neoplastic tissue. These tests are based on proteins or nucleic acids,
and represent a tool for the early detection, prognosis, survival and prediction of the response to CRC treatment. The objective of this research work is to analyze the usefulness of protein-based plasma biomarkers for the early detection of CRC. Moreover,
a combination of biomarkers that includes carcinoembryonic antigen, cyclooxygenase 2, tissue inhibitor of metalloproteinase-1 and p53 autoantibodies is proposed to maximize the benefits of early detection of premalignant lesions and colorectal cancer, and minimize the number of patients with false-positive results and invasive procedures with potential complications.
Downloads
References
Dougherty MK, Brenner AT, Crockett SD, Gupta S, Wheeler SB, CokerSchwimmer M, et al. Evaluation of interventions intended to increase
colorectal cancer screening rates in the United States: a systematic
review and meta-analysis. JAMA. 2018; 178(12): 1645-58.
Ramos W, De La Cruz-Vargas JA. Presentación del documento técnico
“Análisis de la situación del cáncer en el Perú, 2018”. Rev Fac Med
Hum. 2020; 20(1): 10-1.
McGeoch L, Saunders CL, Griffin SJ, Emery JD, Walter FM, Thompson
DJ, et al. Risk prediction models for colorectal cancer incorporating
common genetic variants: a systematic review. Cancer Epidemiol
Biomark Prev. 2019; 28: 1580-93.
The Union for International Cancer Control (UICC). Global Cancer
Observatory – GLOBOCAN [Internet]. 2018. Disponible en: https://
gco.iarc.fr/today/data/factsheets/populations/604-peru-factsheets.pdf
Maida M, Macaluso FS, Ianiro G, Mangiola F, Sinagra E, Hold G, et
al Screening of colorectal cancer: present and future. Expert Rev
Anticancer Ther. 2017; 17(12): 1131-46.
Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy
and screening colonoscopy on colorectal cancer incidence and
mortality: systematic review and meta-analysis of randomised
controlled trials and observational studies. BMJ. 2014; 348: g2467.
Lindholm E, Brevinge H, Haglind E. Survival benefit in a randomized
clinical trial of faecal occult blood screening for colorectal cancer.
Br J Surg. 2008; 95(8): 1029-36.
Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Young GP,
et al. Colorectal cancer screening: a global overview of existing
programmes. Gut. 2015; 64(10): 1637-49.
Johnson CD, Chen MH, Toledano AY, Heiken JP, Dachman A, Kuo MD,
et al. Accuracy of CT colonography for detection of large adenomas
and cancers. N Engl J Med. 2008; 359(12): 1207-17.
Ramos W, Venegas D, Medina J, Guerrero PC, Cruz A. Análisis de la
situación del cáncer en el Perú [Internet]. Lima: Dirección General
de Epidemiología; 2013. Disponible en https://www.dge.gob.pe/
portal/docs/asis_cancer.pdf
Walsh JME, Terdiman JP. Colorectal cancer screening: scientific
review. JAMA. 2003; 289(10): 1288-96.
Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard
GP, et al. Multitarget stool DNA testing for colorectal-cancer
screening. N Engl J Med. 2014; 370: 1287-97.
Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, et al. A
novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB)
for the treatment of solid tumors. Clin Cancer Res. 2016; 22(13):
-97.
Chen X, Wang X, He H, Liu Z, Hu JF, Li W. Combination of circulating
tumor cells with serum carcinoembryonic antigen enhances clinical
prediction of non-small cell lung cancer. PLoS One. 2015; 10:
e0126276.
Huang C, Zhan T, Liu Y, Li Q, Wu H, Ji D, et al. Glycomic profiling of
carcinoembryonic antigen isolated from human tumor tissue. Clin
Proteomics. 2015; 12(1): 17.
Kumar V, Al-Abbasi FA, Verma A, Mujeeb M, Anwar F. Umbelliferone
β-D-galactopyranoside exerts an anti-inflammatory effect by
attenuating COX-1 and COX-2. Toxicol Res. 2015; 4: 1072-84.
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and
suppresses tumor immunity. Cancer Cell Int. 2015; 15: 106.
Moller Sorensen N, Vejgaard Sorensen I, Ornbjerg Wortz S, Schrohl AS,
Dowell B, Davis G, et al. Biology and potential clinical implications
of tissue inhibitor of metalloproteinases-1 in colorectal cancer
treatment. Scand J Gastroenterol. 2008; 43(7): 774-86.
Trivers GE, De Benedetti VM, Cawley HL, Caron G, Harrington AM,
Bennett WP, et al. Anti-p53 antibodies in sera from patients with
chronic obstructive pulmonary disease can predate a diagnosis of
cancer. Clin Cancer Res. 1996; 2(10): 1767-75.
Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Richard Boland
C, et al. Fecal MicroRNAs as novel biomarkers for colon cancer
screening. Cancer Epidemiol Biomarkers Prev. 2010;19(7): 1766-74.
Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I,
et al. Noninvasive biomarkers of colorectal cancer: role in diagnosis
and personalised treatment perspectives. Gastroenterol Res Pract.
; 2018: 2397863.
Adler A, Geiger S, Keil A, Bias H, Schatz P, DeVos T, et al. Improving
compliance to colorectal cancer screening using blood and stool
bases tests in patients refusing screening colonoscopy in Germany.
BMC Gastroenterol. 2014; 14: 183.
Provenzale D, Gupta S, Ahnen DJ, Markowitz AJ, Chung DC, Mayer RJ,
et al. NCCN Guidelines insights: colorectal cancer screening, version
2018. J Natl Compreh Canc Netw. 2018; 16(8): 939-49.
Ogunwobi O, Mahmood F, Akingboye A. Biomarkers in colorectal
cancer: current research and future prospects. Int J Mol Sci. 2020;
(15): 5311.
Qaseem A, Crandall CJ, Mustafa RA, Hicks LA, Wilt TJ. Clinical
Guidelines Committee of the American College of Physicians.
Screening for colorectal cancer in asymptomatic average-risk adults:
a Guidance Statement From the American College of Physicians. Ann
Intern Med. 2019; 171(9): 643-54.
Fraser CG, Benton SC. Detection capability of quantitative faecal
immunochemical tests for haemoglobin (FIT) and reporting of low
faecal haemoglobin concentrations. Clin Chem Lab Med. 2019; 57(5):
-6.
Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte
SJ, et al. Colorectal cancer screening for average‐risk adults: 2018
guideline update from the American Cancer Society. CA Cancer J
Clin. 2018; 68(4): 250-81.
Danese E, Montagnana M, Lippi G. Circulating molecular biomarkers
for screening or early diagnosis of colorectal cancer: which is ready
for prime time? Ann Transl Med. 2019; 7(21): 610.
Liu H, Ye D, Chen A, Tan D, Zhang W, Jiang W, et al. A pilot study of
new promising non-coding RNA diagnostic biomarkers for early-stage
colorectal cancers. Clin Chem Lab Med. 2019; 57(7): 1073-83.
Montagnana M, Lippi G. Cancer diagnostics: current concepts and
future perspectives. Ann Transl Med. 2017; 5(13): 268.
Lauby-Secretan B, Vilahur N, Bianchini F, Guha N, Straif K,
International Agency for Research on Cancer Handbook Working
Group. The IARC perspective on colorectal cancer screening. N Engl
J Med. 2018; 378(18): 1734-40.
Payne SR. From discovery to the clinic: the novel DNA methylation
biomarker (m) SEPT9 for the detection of colorectal cancer in blood.
Epigenomics. 2010; 2(4): 575-85.
Song L, Li Y, Jia J, Zhou G, Wang J, Kang Q, et al. Algorithm
Optimization in Methylation Detection with Multiple RT-qPCR. PLoS ONE. 2016; 11(11): e0163333.
Church TR, Wandell M, Lofton-Day C. Prospective evaluation
of methylated SEPT9 in plasma for detection of asymptomatic
colorectal cancer. Gut. 2014; 63(2): 317-25.
Potter NT, Hurban P, White MN. Validation of a real-time PCR-based
qualitative assay for the detection of methylated SEPT9 DNA in
human plasma. Clin Chem. 2014; 60(9): 1183-91.
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et
al. Regulation by let-7 and lin-4 miARNs results in target mRNA
degradation. Cell. 2005; 122(4): 553-63.
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, PogosovaAgadjanyan EL, et al. Circulating microRNAs as stable blood-based
markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105(30):
-8.
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance
of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol.
; 11(3): 145-56.
Khoury S, Tran N. Circulating microRNAs: potential biomarkers for
common malignancies. Biomark Med. 2015; 9(2): 131-51.
Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD,
Craig DW. Translating RNA sequencing into clinical diagnostics:
opportunities and challenges. Nat Rev Genet. 2016; 17(5): 257-71.
Wang R, Wen H, Xu Y, Chen Q, Luo Y, Lin Y, et al. Circulating microRNAs
as a novel class of diagnostic biomarkers in gastrointestinal tumors
detection: a meta-analysis based on 42 articles. PLoS ONE. 2014;
(11): e113401.
Zeng W, Tu Y, Zhu Y, Wang Z, Li C, Lao L, et al. Predictive power
of circulating miARNs in detecting colorectal cancer. Tumour Biol.
; 36(4): 2559-67.
He Y, Lin J, Kong D, Huang M, Xu C, Kim T-K, et al. Current State of
Circulating MicroRNAs as Cancer Biomarkers. Clin Chem. 2015; 61(9):
-55.
Yan L, Zhao W, Yu H, Wang Y, Liu Y, Xie C. A comprehensive metaanalysis of MicroRNAs for predicting colorectal cancer. Medicine
(Baltimore). 2016; 95(9): e2738.
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S.
Blood-based microRNAs as biomarkers for the diagnosis of colorectal
cancer: a systematic review and meta-analysis. Br J Cancer. 2017;
(6): 762-74.
Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al.
Serum miR-21 as a diagnostic and prognostic biomarker in colorectal
cancer. J Natl Cancer Inst. 2013; 105(12): 849-59.
Taguchi A, Hanash SM. Unleashing the power of proteomics to develop
blood-based cancer markers. Clin Chem. 2013; 59(1): 119-26.
Ransohoff DF. Rules of evidence for cancer molecular-marker
discovery and validation. Nat Rev Cancer. 2004; 4(4): 309-14.
Zhang S-Y, Lin M, Zhang H-B. Diagnostic value of carcinoembryonic
antigen and carcinoma antigen 19-9 for colorectal carcinoma. Int J
Clin Exp Pathol. 2015; 8(8): 9404-9.
Azzal HS, Al-Wasiti EA, Qasim BJ. Serum CEA and CA 19-9 along the
colorectal adenoma-carcinoma sequence. Int J Adv Res. 2015; 3(12):
-35.
Lumachi F, Chiara G, Tozzoli R, Re GL, Basso S. P-024 Carcinoembryonic
antigen (CEA) and the carcinoma antigen 19-9 (CA 19-9) together
in early diagnosis of Stage I-II colorectal adenocarcinoma. A casecontrol study. Ann Oncol. 2016; 27(2): ii7.
Wasilewicz MP, Kołodziej B, Bojułko T, Kaczmarczyk M, Sulżyc-Bielicka
V, Bielicki D. Expression of cyclooxygenase-2 in colonic polyps. Pol Arch
Med Wewn. 2010; 120(9): 313-9.
Xiao Y, Wang J, Qin Y, Xuan Y, Jia Y, Hu W, et al. Ku80 cooperates
with CBP to promote COX-2 expression and tumor growth.
Oncotarget.2015; 6(10): 8046-61.
Yang W, Luo Y, Hu S, Li Y, Liu Q. Value of combined detection of
Hugo Alpaca
https://doi.org/10.24265/horizmed.2022.v22n3.12
serum carcino-embryonic antigen, carbohydrate antigen 19-9 and
cyclooxygenase-2 in the diagnosis of colorectal cancer. Oncol Lett.
; 16(2): 1551-6.
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and
suppresses tumor immunity. Cancer Cell Int. 2015; 15(1): 1-6.
Holten-Andersen MN, Christensen IJ, Nielsen HJ, Stephens RW,
Jensen V, Nielsen OH, et al. Total levels of tissue inhibitor of
metalloproteinases 1 in plasma yield high diagnostic sensitivity and
specificity in patients with colon cancer. Clin Cancer Res. 2002;
(1): 156-64.
Waas ET, Hendriks T, Lomme RMLM, Wobbes T. Plasma levels of matrix
metalloproteinase-2 and tissue inhibitor of metalloproteinase-1
correlate with disease stage and survival in colorectal cancer
patients. Dis Colon Rectum. 2005; 48(4): 700-10.
Mroczko B, Groblewska M, Okulczyk B. The diagnostic value of
matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix
metalloproteinases 1 (TIMP-1) determination in the sera of colorectal
adenoma and cancer patients. Int J Colorectal Dis. 2010; 25(10):
-84.
Nielsen HJ, Brünner N, Jorgensen LN, Olsen J, Rahr HB, Thygesen
K, et al. Plasma TIMP-1 and CEA in detection of primary colorectal
cancer: a prospective, population based study of 4509 high-risk
individuals. Scand J Gastroenterol. 2011; 46(1): 60-9.
Christensen IJ, Brunner N, Dowell B, Davis G, Nielsen HJ, Newstead
G, et al. Plasma TIMP-1 and CEA as markers for detection of
primary colorectal cancer: a prospective validation study including
symptomatic and non-symptomatic individuals. Anticancer Res.
; 35(9): 4935-41.
Xiang C, Jiayu S, Xue W, Yumeng Y, Leshan C, Yanxuan X, et al. A
meta-analysis of proteomic blood markers of colorectal cancer. Curr
Med Chem. 2020.
Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer
immunomics using autoantibody signatures for biomarker discovery.
Mol Cell Proteomics. 2007; 6(7): 1115-22.
Wu J, Li X, Song W, Fang Y, Yu L, Liu S, et al. The roles and applications
of autoantibodies in progression, diagnosis, treatment and prognosis
of human malignant tumours. Autoimmun Rev. 2017; 16(12): 1270-
Tagi T, Matsui T, Kikuchi S, Hoshi S, Ochiai T, Kokuba Y, et al.
Dermokine as a novel biomarker for early-stage colorectal cancer. J
Gastroenterol. 2010; 45(12): 1201-11.
Villar-Vázquez R, Padilla G, Fernández-Aceñero MJ, Suárez A, Fuente
E, Pastor C, et al. Development of a novel multiplex beads-based
assay for autoantibody detection for colorectal cancer diagnosis.
Proteomics. 2016; 16(8): 1280-90.
Chen H, Werner S, Butt J, Zörnig I, Knebel P, Michel A, et al.
Prospective evaluation of 64 serum autoantibodies as biomarkers
for early detection of colorectal cancer in a true screening setting.
Oncotarget. 2016; 7(13): 16420.
Kunizaki M, Sawai T, Takeshita H, Tominaga T, Hidaka S, To K, et al.
Clinical value of serum p53 antibody in the diagnosis and prognosis
of colorectal cancer. Anticancer Res. 2016; 36(8): 4171-5.
Chung-Wei F, Yung-Bin K, Geng-Pin L, Si-Min C, Shih-Hsien C, Bo-An L,
et al. Development of a multiplexed tumor-associated autoantibodybased blood test for the detection of colorectal cancer. Clin Chim
Acta. 2017; 475: 157-63.
Wang H, Li X, Zhou D, Huang J. Autoantibodies as biomarkers
for colorectal cancer: A systematic review, meta-analysis, and
bioinformatics analysis. Int J Biol Markers. 2019; 34(4): 334-47.
Shah R, Jones E, Vidart V, Kuppen P, Conti JA and Francis NK.
Biomarkers for Early Detection of Colorectal Cancer and Polyps:
Systematic Review. Cancer Epidemiol Biomarkers Prev. 2014; 23(9):
-28.
Parente F, Boemo C, Ardizzoia A, Costa M, Carzaniga P, Ilardo A, et al.
Outcomes and cost evaluation of the first two rounds of a colorectal
cancer screening program based on immunochemical fecal occult
blood test in northern Italy. Endoscopy. 2013; 45: 27-34.
Van der Vlugt M, Grobbee EJ, Bossuyt PM, Bongers E, Spijker W,
Kuipers EJ, et al. Adherence to colorectal cancer screening: four
rounds of faecal immunochemical test-based screening. Br J Cancer.
; 116(1): 44-9.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Horizonte Médico (Lima)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Horizonte Médico (Lima) (Horiz. Med.) journal’s research outputs are published free of charge and are freely available to download under the open access model, aimed at disseminating works and experiences developed in biomedical and public health areas, both nationally and internationally, and promoting research in the different fields of human medicine. All manuscripts accepted and published in the journal are distributed free of charge under the terms of a Creative Commons license – Attribution 4.0 International (CC BY 4.0).