Lactato y catecolaminas: respuesta fisiológica en el paciente crítico

Autores/as

DOI:

https://doi.org/10.24265/horizmed.2022.v22n1.09

Palabras clave:

Lactato, Catecolaminas, Receptores Adrenérgicos

Resumen

El lactato es un metabolito altamente dinámico que, en condiciones anaerobias, es producido por hipoxia o isquemia; y en condiciones aerobias, es sintetizado por un mecanismo impulsado por la estimulación adrenérgica, a través del receptor β2, que potencia la acción de la bomba sodio-potasio, y por un estado de glicólisis aerobia acelerada. Este metabolito es capaz de intercambiarse entre diferentes células productoras y consumidoras, con lo que asegura la materia prima para obtener energía.
El sistema nervioso simpático responde a los estímulos de estrés con la liberación de catecolaminas, que actúan como hormonas y como neurotransmisores en varios tejidos del cuerpo y permiten un aumento del metabolismo que eleva los valores de glucosa y el oxígeno disponible.
Existe una relación fisiológica de dependencia entre las catecolaminas y la producción de lactato que predispone al organismo para responder de forma efectiva ante una situación de estrés. Sin embargo, en tejidos sensibles, la respuesta adrenérgica exacerbada puede ocasionar efectos exagerados que pueden incrementar la probabilidad de fallo. En base al conocimiento de estos mecanismos, se plantean estrategias terapéuticas enfocadas en regular la actividad simpática.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ernsberger U, Rohrer H. Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev. 2018; 13(1): 20.

Bar-Even A, Flamholz A, Noor E, Milo R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol. 2012; 8(6): 509-17.

Levy B. Lactate and shock state: The metabolic view. Curr Opin Crit Care. 2006; 12(4): 315-21.

Suetrong B, Walley KR. Lactic acidosis in sepsis: It’s Not All anaerobic: Implications for diagnosis and management. Chest. 2016; 149(1): 252-61.

Cruz RSdO, de Aguiar RA, Turnes T, Santos RPD, Fernandes de Oliveira MFM, Caputo F. Intracellular shuttle: the lactate aerobic metabolism. Sci World J. 2012; 2012: 420984.

Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018; 27(4): 757-85.

Garcia-Alvarez M, Marik P, Bellomo R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. 2014; 2(4): 339-47.

Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020; 2(7): 566-71.

Matsui T, Omuro H, Liu YF, Soya M, Shima T, Mcewen BS, et al. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A. 2017; 114(24): 6358-63.

Dvorkin MA, Cardinali DP, Iermoli R. Bases Fisiológicas de la Práctica Médica. 14th ed. Buenos Aires: Editorial Médica Panamericana; 2010.

Waxenbaum JA, Varacallo M. Anatomy, Autonomic Nervous System. StatPearls; 2019.

Guyton AC, Hall JE. Tratado de Fisiología Médica. 13ra ed. Barcelona: Elsevier; 2016. p. 773-85.

Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003; 42(1): 33-84.

Harrington MV, Diaz JVN, Rodriguez-Moreno A. Nucleus ceruleus. Neurotransmitters, functions and pathology. Anest Méx. 2007; 19(3): 155-66.

Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci. 2019; 39(42): 8239-49.

Antonio-Villa NE, Bello-Chavolla OY. Fisiología de la Glándula Suprarrenal. En: Fisiología de los sistemas endocrino y digestivo. México D. F.: Manual Moderno; 2018.

Gutiérrez-García A, Sánchez-Ocampo EM. Uso de las principales drogas inotrópicas, vasoactivas y vasodilatadoras en el perioperatorio. Rev Mex Anestesiol. 2016; 39(Supl 1): 218-22.

Katzung BG. Basic and Clinical Pharmacology. 14th ed. San Francisco: McGraw-Hill; 2018.

Taira CA, Carranza A, Bertera F, Höcht C. Catecolaminas síntesis metabolismo. Receptores Adrenérgicos y dopaminérgicos. En: Hipertensión Arterial, epidemiología, fisiología, fisiopatología diagnóstico y terapeútica. Sociedad Argentina de Hipertensión Arterial. 2016. p. 94-8.

Pontificia Universidad Javeriana. Departamento de Ciencias Fisiológicas [Internet]. Bogotá; 2020. Disponible en: https://www.javeriana.edu.co/Facultades/Medicina/fisiologia/nguias/sna.htm

Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: A placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Groups. Lancet. 2000; 356(9248): 2139-43.

VanValkinburgh D, Kerndt CC, Hashmi M. Inotropes And Vasopressors. StatPearls; 2020.

Marini JJ, Wheeler A. Medicina Crítica y Cuidados Intensivos. Buenos Aires: Jounal S. A.; 2006. p. 50-8.

Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: A prospective study. Lancet. 2005; 365(9462): 871-5.

Sarpeshkar V, Bentley DJ. Adrenergic-beta(2) receptor polymorphism and athletic performance. J Hum Genet. 2010; 55(8): 479-85.

Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, et al. The dynamic process of β(2)-adrenergic receptor activation. Cell. 2013; 152(3): 532-42.

Pan QZ, Shi JH, Li Y, Gao M, Ren SP, Zhao GQ. The Effect of Beta-2 Adrenergic Receptor Genetic Variants on Vasopressor Requirements in Surgery Patients: A Meta-analysis. Biomed Environ Sci. 2019; 32(3): 226-30.

Qvisth V, Hagström-Toft E, Enoksson S, Bolinder J. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: Role of β-adrenoreceptor subtypes. J Clin Endocrinol Metab. 2008; 93(1): 240-6.

Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: A prospective, randomized study. Intensive Care Med. 1997; 23(3): 282-7.

Hernández G, Cavalcanti AB, Ospina-Tascón G, Zampieri FG, Dubin A, Hurtado FJ, et al. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK-a randomized controlled trial. Ann Intensive Care. 2018; 8(1): 52.

Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality among Patients with Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA. 2019; 321(7): 654-64.

Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017; 7: 29.

Levy B, Desebbe O, Montemont C, Gibot S. Increased aerobic glycolysis through β2 stimulation is a common mechanism involved in lactate formation during shock states. Shock. 2008; 30(4): 417-21.

Omar S, Burchard AT, Lundgren AC, Mathivha LR, Dulhunty JM. The relationship between blood lactate and survival following the use of adrenaline in the treatment of septic shock. Anaesth Intensive Care.

https://doi.org/10.24265/horizmed.2022.v22n1.122011; 39(3): 449-55.

Li J, Sun W, Guo Y, Ren Y, Li Y, Yang Z. Prognosis of β-adrenergic blockade therapy on septic shock and sepsis: A systematic review and meta-analysis of randomized controlled studies. Cytokine. 2020; 126: 154916.

Hernández G, Tapia P, Alegría L, Soto D, Luengo C, Gomez J, et al. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. Crit Care. 2016; 20(1): 234.

Lee YR, Seth MS, Soney D, Dai H. Benefits of Beta-Blockade in Sepsis and Septic Shock: A Systematic Review. Clin Drug Investig. 2019; 39(5): 429-40.

##submission.downloads##

Publicado

2022-03-18

Cómo citar

Torres-Cabezas, P. ., Aguayo-Moscoso, S. X. ., Montalvo-Villagómez, M. ., Jara-González, F. ., Vélez-Paez, P. A. ., Velarde-Montero, G. ., Tinoco-Solórzano, A. ., & Vélez-Paez, J. L. (2022). Lactato y catecolaminas: respuesta fisiológica en el paciente crítico. Horizonte Médico (Lima), 22(1), e1355. https://doi.org/10.24265/horizmed.2022.v22n1.09

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a