Free radicals and antioxidant system

Authors

DOI:

https://doi.org/10.24265/horizmed.2023.v23n2.12

Keywords:

free radicals, antioxidants, oxidative stress, reactive oxygen species

Abstract

Free radicals are compounds characterized by having an unpaired electron in their outer orbit, a condition that makes them highly reactive, i.e., they interact through diffusion-controlled reactions with proteins, lipids and nucleic acids.
They have also been referred to as reactive oxygen species (ROS), reactive nitrogen species (RNS) or reactive sulfur species
(RSS). In the human organism, they are mainly produced in the mitochondrial electron transport chain, where respiratory
complexes I and III specifically participate and reduce oxygen by converting it into superoxide anion. Likewise, they can
be formed through a wide variety of enzymatic and non-enzymatic reactions involving substances that are synthesized by cells or are ingested with food and some medicines. Human beings have an antioxidant system which is both enzymatic
and non-enzymatic in nature and whose function is to protect the organism from the harmful action of free radicals. This
system includes enzymes—such as catalase, superoxide dismutase, thioredoxin, etc.—and non-enzymatic compounds—such as glutathione, ferritin, myoglobin, etc. However, they are not efficient enough to protect it, so it is necessary to eat foods that contain substances with antioxidant properties whose protective action will depend on their chemical reactivity and their concentration. These antioxidant compounds are mainly found in fruits and vegetables, where polyphenols, flavonoids, carotenoids, vitamin C, vitamin E, etc. have been identified. A significant amount of evidence suggests that the intake of antioxidant substances protects the body from the damaging effect of free radicals, but when the oxidative action prevails over the antioxidant action, it can lead to oxidative stress, a condition that is closely linked to a wide variety of chronic non-communicable diseases including cancer, diabetes mellitus, obesity, psoriasis, atherosclerosis,
among others. All this seems to indicate that the term “cellular redox steady state” more appropriately describes the constant adaptation to a situation of rapid chemical turnover and suggests that the substances involved in this process be designated as “biologically reactive species” due to the existence of harmful compounds such as hydrogen peroxide, peroxynitrite, etc., which are not—strictly speaking—free radicals but have toxic effects on cells.

Downloads

Download data is not yet available.

References

Gomberg M. An instance of trivalent carbon: Triphenylmethyl. J Am Chem Soc. 1900;22(11):757-71.

Stadie WC, Haugaard N. Oxygen poisoning; the effect of high oxygen pressure upon enzymes; succinicdehydrogenase and cytochrome oxidase. J Biol Chem. 1945;161:153-73.

Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-radiation: A mechanism in common. Science. 1954;119(3097):623-6.

Michaelis L. Fundamentals of oxidation and respiration. Am Sci. 1946;34(4):573-596.

Harmand D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298-300.

Janciauskiene S. The Beneficial Effects of Antioxidants in Health and Diseases. Chronic Obstr Pulm Dis. 2020;7(3):182-202.

Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74.

Gui-Fang D, Xi L, Xiang-Rong X, Li-Li G, Jie-Feng X, Hua-Bin L. Antioxidant capacities and total phenolic contents of 56 vegetables. J Funct Foods. 2013;5(1):260-6.

Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7-8):466-72.

Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A, et al. Reductive stress after exercise: the issue of redox individuality. Redox Biol. 2014;2:520-8.

Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, et al. Experimental verification of regression to the mean in redox biology: differential responses to exercise. Free Radic Res. 2016;50(11):1237-44.

Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-Induced Oxidative Stress and Dietary Antioxidants. Asian J Sports Med. 2015;6(1):e24898.

Hannou SA, Haslam DE, McKeown NM. Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128(2):54555.

Yan-Bo Z, Yan-Hai M, Chang S, Rong-Yuan Z, Shi C. High fructose causes cardiac hypertrophy via mitochondrial signaling pathway. Am J Transl Res. 2016;8(11):4869-80.

Loza-Medrano SS, Baiza-Gutman LA, Ibanez-Hernandez MA, CruzLopez M, Diaz-Flores M. Alteraciones moleculares inducidas por fructosa y su impacto en las enfermedades metabolicas. Rev Med Inst Mex Seguro Soc. 2019;56(5):491-504.

DiNicolantonio JJ, Oï¿1/2Keefe JH, Lucan SC. Added Fructose: A Principal Driver of Type 2 Diabetes Mellitus and Its Consequences. Mayo Clin Proc. 2015;90(3):372-81.

Jaiswal N, Maurya CK, Arha D, Avisetti DR, Prathapan A, Raj PS et al. Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress. Apoptosis. 2015;20(7):930-47.

Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145-69.

McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):604955.

Lancaster JR. Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci OA. 2015;1(1):FS059.

Ferradini C, Foos J, Houee C, Pucheault J. The reaction between Superoxide Anion and Hydrogen-Peroxide. Photochem Photobiol. 1978;28(4-5):697-700.

Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int J Mol Sci. 2018;19(2):417.

Schroder K. NADPH oxidases: Current aspects and tools. Redox Biol. 2020;34:101512.

Cascales M. Bioquimica y Fisiopatologia del estres oxidativo. 1997. Madrid, Espana: Fundacion Jose Casares Gil.

Inoue H, Hirobe M. Disulfide cleavage and insulin denaturation by active oxygen in the copper(II)/ascorbic acid system. Chem Pharm Bull (Tokyo). 1986;34(3):1075-9.

Guija-Guerra H, Guija-Poma E, Ponce-Pardo J, Inocente-Camones M, Camarena-Chaviguri L. Generacion de radicales libres por efecto de vitamina C sobre un jarabe antianemico de sulfato ferroso. Horiz Med. 2018;18(4):35-41.

Guija-Poma E, Troncoso-Corzo L, Palomino-Paz F, Guija-Guerra H, Oliveira-Bardales G, Ponce-Pardo J, et al. Estudio histopatologico de los efectos de la administracion de hierro hemo y sulfato ferroso con vitamina C en cerebro e higado de rata. Horiz Med. 2019;19(2):12-8.

Calderon-Velez JC. La suplementacion con hierro y el aumento del estres oxidativo en el embarazo: una paradoja poco discutida. Rev Colomb Obstet Ginecol. 2007;58(4):304-8.

Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: A leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal. 2013;18:692-713.

Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defense and redox signalling. Biochem J. 2010;425(2):313-25.

Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4):341-6.

Borchert A, Kalms J, Roth SR, Rademacher M, Schmidt A, Holzhutter H et al. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests and alternative mechanism of peroxide reduction. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1095-107.

Collet J, Messens J. Structure, Function, and mechanism of thioredoxin Proteins. Antioxid Redox Signal. 2010;13:1205-16.

Goyal MM, Basak A. Human catalase: looking for complete identity. Protein Cell. 2010:1(10):888-97.

Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016;95:27-42.

Murdoch CE, Bachschmid MM, Matsui R. Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway. Biochem Soc Trans. 2014;42:1665-70.

Ren X, Zou L, Lu J, Holmgren A. Selenocystein in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Rad Biol Med. 2018;127:238-47.

Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837.

Flogel U, Fago A, Rassaf T. Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. J Exp Biol. 2010;213(Pt16):2726-33.

Theil EC. Ferritin: The protein nanocage and iron biomineral in health and in disease. Inorg Chem. 2013;52(21):12223-33.

Heger Z, Rodrigo MA, Krizkova S, Ruttkay-Nedecky B, Zalewska M, Del Pozo EM, et al. Metallothionein as a scavenger of free radicals new cardioprotective therapeutic agent or initiator of tumor chemoresistance? Curr Drug Targets. 2016;17(12):1438-51.

Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors. 2011;37:330-54.

Fujisawa S, Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res. 2005;25(2A):965-9.

Miller E, Mrowicka M, Malinowska K, Mrowicki J, Saluk-Juszczak J, Kedziora J. Effects of whole-body cryotherapy on oxidative stress in multiple sclerosis patients. J Therm Biol. 2010;35(8):406-10.

Eid C, Hemadi M, Ha-Duong NT, El Hage J. Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta. 2014;1840(6):1771-81.

Hineno A, Kaneko K, Yoshida K, Ikeda S. Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity. Neurochem Res. 2011;36(11):2127-35.

Yu W, Cheng JD. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front Pharmacol. 2020;11:582680.

Taverna M, Marie A, Mira J, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4.

Ziberna L, Martelanc M, Franko M, Passamonti S. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep. 2016;6:29240.

Burrow H, Kanwar RK, Mahidhara G, Kanwar JR. Effect of seleniumsaturated bovine lactoferrin (Se-bLF) on antioxidant enzyme activities in human gut epithelial cells under oxidative stress. Anticancer Agents Med Chem. 2011;11(8):762-71.

Langhans W. Food components in health promotion and disease prevention. J Agric Food Chem. 2018;66(10):2287-94.

Rasoulia H, Farzaeib MH, Khodarahmia R. Polyphenols and their benefits: A review. Int J Food Prop. 2017;20(Sup 2):S1700-41.

Juurlink BHJ, Azouz HJ, Aldalati AMZ, AlTinawi BMH, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J. 2014;13:63.

Alam MA. Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front Nutr. 2019;6:121.

Khawand TE, Courtois A, Valls J, Richard T, Krisa S. A review of dietary stilbenes: sources and bioavailability. Phytochem Rev. 2018;17:100729.

Rodriguez-Garcia C, Sanchez-Quezada C, Toledo E, DelgadoRodriguez M, Gaforio JJ. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules. 2019;24(5):917.

Wu C, Xu H, Heritier J, Andlrauer W. Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chem. 2012;132:144-9.

Khan MK, Zill-E-Huma, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compost Anal. 2014;33(1):85-104.

Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. Int J Food Prop. 2017;20(6):1197-238.

Maatta-Riihinen KR, Kahkonen MP, Torronen AR, Heinonen IM. Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J Agric Food Chem. 2005;53:8485-91.

Speer H, Dï¿1/2Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and human health-A focus on oxidative stress, inflammation and disease. Antioxidants (Basel). 2020;9(5):366.

Salinas CM, Lopez-Sobaler AM. Beneficios de la soja en la salud femenina. Nutr Hosp. 2017;34(Sup 4):36-40.

Khalid M, Saeed-ur-Rahman, Bilal M, Iqbal HMN, Huang D. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatal Agric Biotechnol. 2019;17:399-407.

Njus D, Kelley PM, Tu Y, Schlegelb BH. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic Biol Med. 2020;159:37-43.

Dosedel M, Jirkovsky E, Macakova K, Kujovska L, Javorska L, Pourova J et al. Vitamin C-Sources, physiological role, kinetics, deficiency, use, toxicity and determination. Nutrients. 2021;13(2):615.

Traber MG, Atkinson J. Vitamin E, Antioxidant and Nothing More. Free Radic Biol Med. 2007;43(1):4-15.

Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979;278(5706):737-8.

Chun J, Lee J, Ye L, Exler J, Eitenmiller RR. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J Food Compost Anal. 2006;19(2-3):196-204.

Published

2023-05-30

How to Cite

1.
Guija-Guerra H, Guija-Poma E. Free radicals and antioxidant system. Horiz Med [Internet]. 2023May30 [cited 2025Jul.6];23(2):e2158. Available from: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2158

Issue

Section

Review article

Most read articles by the same author(s)