Distribución de frecuencias del polimorfismo T1236C en el gen ABCB1 en las poblaciones peruanas y comparación con poblaciones de América, Asia, Europa y África

Autores

  • Alberto Alcibiades Salazar Granara Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología. Lima, Perú. Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina de Altura. Lima, Perú. Doctor en medicina; médico cirujano. https://orcid.org/0000-0003-1996-3176
  • José Sandoval Sandoval Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular. Lima, Perú. Licenciado en biología; doctor en Filosofía. https://orcid.org/0000-0003-2673-4937
  • Eduardo Barbosa Coelho Universidad de São Paulo, Facultad de Medicina de Ribeirão Preto, Laboratorio de Hipertensión Experimental y Farmacogenética. São Paulo, Brasil. Doctor en medicina, médico nefrólogo. https://orcid.org/0000-0003-3491-3396
  • Ángel Alvarado Yarasca Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación en Farmacología y Medicina Genómica. Lima, Perú. Químico farmacéutico; doctor en Farmacia y Química. https://orcid.org/0000-0001-8694-8924
  • Pool Marcos Carbajal Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología. Lima, Perú. Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina de Altura. Lima, Perú. Sociedad Peruana de Farmacología y Terapéutica Experimental (SOPFARTEX). Lima, Perú. Licenciado en biología, doctor en Ciencias. https://orcid.org/0000-0002-7741-0337

DOI:

https://doi.org/10.24265/horizmed.2025.v25n3.07

Palavras-chave:

Genes, Proteína ABCB1 , Poblaciones, Altitud , Perú , Salud

Resumo

Objetivo: Las mutaciones en el gen ABCB1 tienen un impacto en la respuesta a diversos fármacos
y aparentemente estarían también asociados a la génesis de neoplasias. El presente estudio explora y compara la distribución de frecuencias de la variación genética 1236T>C en el gen ABCB1 en nueve poblaciones peruanas de diferentes procedencias geográficas y ubicadas en diferentes niveles de altitud, así como las frecuencias genotípicas y alélicas reportadas en diferentes continentes. Materiales y métodos: El muestreo se llevó a cabo en los siguientes departamentos y localidades: Lima (n = 8), Loreto-Andoas (n = 16), San Martín-Lamas (n = 16),
Puno-Uros (n = 7), Puno-Taquile (n = 5), Arequipa-Chivay (n = 10), Arequipa-Cabanaconde (n = 6),
Ancash-Parobamba (n = 10) y Apurímac-Andahuaylas (n = 10). Se recolectó la muestra biológica, sangre periférica y/o células epiteliales por hisopado bucal. La extracción de ADN se efectuó mediante una técnica estándar. La determinación del polimorfismo 1236T>C (rs1128503) se realizó mediante reacción en cadena de la polimerasa (PCR) en tiempo real. Asimismo, se consideraron variables relacionadas con la procedencia geográfica (costa, sierra o selva), y la altitud (<2500 m s. n. m. o >2500 m s. n. m.). Para los análisis estadísticos, se aplicaron la prueba de
equilibrio de Hardy-Weinberg y la prueba X2 de Pearson, y se consideró un nivel de significancia
de valor p <0,05 y un intervalo de confianza (IC) al 95 %. Resultados: Se determinó la distribución
de frecuencias de la variación 1236T>C en el gen ABCB1 en las poblaciones peruanas. Según su
distribución geográfica en la costa, sierra y selva, en general, se observa una predominancia del
genotipo heterocigoto C/T (asociado con una actividad intermedia de la glicoproteína-P), con
la frecuencia más alta (60 %) registrada en la isla Taquile (Lago Titicaca, Puno). Considerando a la población peruana en conjunto (n = 88), la frecuencia fue de 43 % en localidades ubicadas a altitudes <2500 m s. n. m. y de 50 % a altitudes ≥2500 m s. n. m. En contraste, los homocigotos (C/C – actividad normal y T/T – actividad lenta) mostraron frecuencias similares (30 % y 28 %, respectivamente) a altitudes <2500 m s. n. m., pero distintas (35 % y 15 %, respectivamente)
a altitudes >2500 m s. n. m. En suma, a nivel de país, la distribución de los genotipos muestra lo siguiente: 47 % de C/T, 33 % de C/C y 20 % de T/T. Por otra parte, la prueba de equilibrio de Hardy-Weinberg no mostró ninguna significancia estadística. Conclusiones: El polimorfismo 1236 T>C en el gen ABCB1 en la población peruana presenta una predominancia del genotipo heterocigoto C/T, según la región geográfica y la altitud. A nivel de países o continentes, en general, se observa esa misma tendencia.

Downloads

Não há dados estatísticos.

Referências

Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in

cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233. Disponible en:

https://doi.org/10.3390/ijms21093233

Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of p-glycoprotein

(P-gp) inducers on exposure of p-gp substrates: review of clinical

drug–drug interaction studies. Clin Pharmacokinet. 2020;59(6):699–

Disponible en: https://doi.org/10.1007/s40262-020-00867-1

Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug

resistance to chemotherapy mediated by P‑glycoprotein (Review).

Int J Oncol. 2023;63(5):119. Disponible en: https://doi.org/10.3892/

ijo.2023.5567

Patel D, Sethi N, Patel P, Shah S, Patel K. Exploring the potential of

P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs:

A comprehensive review. Eur J Pharm Biopharm. 2024;198:114267.

Disponible en: http://dx.doi.org/10.1016/j.ejpb.2024.114267

Seelig A. P-Glycoprotein: one mechanism, many tasks and the consequences

for pharmacotherapy of cancers. Front Oncol. 2020;10:576559. Disponible

en: https://doi.org/10.3389/ fonc.2020.576559

Murakami T, Bodor E, Bodor N. Factors and dosage formulations

affecting the solubility and bioavailability of P-glycoprotein substrate

drugs. Expert Opin Drug Metab Toxicol. 2021;17(5):555-580. Disponible

en: https://doi.org/10.1080/17425255.2021.1902986

Hernández-Lozano I, Mairinger S, Filip T, Sauberer M, Wanek T, Stanek

J, et al. PET imaging to assess the impact of P-glycoprotein on

pulmonary drug delivery in rats. J Control Release. 2022;342:44-52.

Disponible en: https://doi.org/10.1016/j.jconrel.2021.12.031.

Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT.

P-glycoprotein: new insights into structure, physiological function,

regulation and alterations in disease. Heliyon. 2022;8(6):e09777.

Disponible en: https://doi.org/10.1016/j.heliyon.2022.e09777

Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE,

et al. Very important pharmacogene summary: ABCB1 (MDR1,

P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152-61.

Disponible en: https://doi.org/10.1097/FPC.0b013e3283385a1c

PharmGKB. ABCB1 [Internet]. Stanford: PharmGKB; 2025. Disponible

en: https://www.pharmgkb.org/gene/PA267/clinicalAnnotation

OMIM. Online Mendelian Inheritance in Man [Internet]. Baltimore: Johns

Hopkins University; 2025. Disponible en: https://www.omim.org/

Valencia E, Marcos P, Barbosa E, Sandoval J, Salazar A. Geographic

distribution of the 3435C>T polymorphism of the MDR1 gene in

Peruvian populations. Drug Metab Pers Ther. 2019;34(3). Disponible

en: https://doi.org/10.1515/dmpt-2018-0041

Salazar A, Youn-Ho K, Figueroa-Tataje J, Quijano F, Ore-Chávez D,

Sandoval-Sandoval J. Frecuencia del polimorfismo 282 C>T del gen

N-Acetiltransferasa (NAT2) en poblaciones peruanas e implicancias

en la salud. Horiz Med. 2016;16(1):20-31. Disponible en: https://doi.

org/10.24265/horizmed.2016.v16n1.04

Salazar A, Sandoval J, Mendizábal R, Kikushima F, Madsen H, Garred P,

et al. Variantes del gen Mannose Binding Lectin (MBL) en pobladores

amazónicos de Andoas-Loreto y su posible implicancia en la salud.

Horiz Med. 2006;6(1):13-9. Disponible en: https://doi.org/10.24265/

horizmed.2006.v6n1.02

Valencia E, Chevarría M, Coelho E, Sandoval J, Salazar A. Metabolizer

phenotype prediction in different Peruvian ethnic groups through

CYP2C9 polymorphisms. Drug Metab Pers Ther. 2021;36(2):113-21.

Disponible en: https://doi.org/10.1515/dmpt-2020-0146

Alvarado-Yarasca A, Sullón L, Salazar A, Loja B, Miyasato J,

Li-Amenero C, et al. Estudio de las variantes alélicas del gen CYP2C9

y monitorización clínica del valproato en plasma como fundamento de

la Medicina Personalizada. Diagnóstico. 2018;57(2):73-8. Disponible

en: https://doi.org/10.33734/diagnostico.v57i2.79

Marcos-Carbajal P, Allca-Muñoz C, Barbosa-Coelho E, Sandoval-

Sandoval J, Salazar-Granara A. Distribución por procedencia y altitud

del polimorfismo RS5522 del gen NR3C2 receptor de mineralocorticoide

en poblaciones peruanas. Rev Cuerpo Med HNAAA. 2024;17(2).

Disponible en: https://doi.org/10.35434/rcmhnaaa.2024.172.2198

Alvarado AT, Salazar-Granara A, Varela N, Quiñones LA, Li-Amenero C,

Bendezú MR, et al. Prevalence of GSTM1*0 and CYP1A1*2A (rs4646903)

variants in the central Peruvian coastal population: Pilot Study of

predictive genetic biomarkers for 4P medicine. Pharmacia. 2025;72:1–

Disponible en: https://doi.org/10.3897/pharmacia.72.e145034

Alvarado AT, Saravia M, Losno R, Pariona R, María Muñoz A,

Ybañez-Julca RO, et al. CYP2D6 and CYP2C19 genes associated with tricontinental and Latin American ancestry of Peruvians

;16(1):14–26. Disponible en: https://doi.org/10.2174/18723128

Alvarado AT, Ybañez-Julca R, Muñoz AM, Tejada-Bechi C, Cerro R,

Quiñones LA, et al. Frequency of CYP2D6*3 and *4 and metabolizer

phenotypes in three mestizo Peruvian populations. Pharmacia

;68(4): 891-898. Disponible en: https://doi.org/10.3897/

pharmacia.68.e75165

Sandoval JR, Salazar-Granara A, Acosta O, et al. Tracing the genomic

ancestry of Peruvians reveals a major legacy of pre-Columbian

ancestors. J Hum Genet. 2013;58(9):627–634. Disponible en: https://

doi.org/10.1038/jhg.2013.73

Harrison P, Ridwan A, Austine-Orimoloye O, Azov A, Barba M, Barnes I,

et al. Ensembl 2024. Nucleic Acids Res. 2024;52(D1):D891–D899.

Disponible en: https://doi.org/10.1093/nar/gkad1049

Contreras-Castillo S, Plaza A, Stojanova J, Navarro G, Carmona R,

Corvalán F, et al. Effect of CYP3A4, CYP3A5, MDR1 and POR genetic

polymorphisms in immunosuppressive treatment in Chilean kidney

transplanted patients. Front Pharmacol. 2021;12:674117. Disponible

en: https://doi.org/10.3389/fphar.2021.674117

Zaruma-Torres F, Lares-Asseff I, Lima A, Reyes-Espinoza A, Loera-

Castañeda V, Sosa-Macías M, et al. Genetic polymorphisms

associated to folate transport as predictors of increased risk for

acute lymphoblastic leukemia in Mexican children. Front Pharmacol.

;7:238. Disponible en: https://doi.org/10.3389/fphar.2016.00238

Pagnotta PA, Melito VA, Lavandera JV, Parera VE, Rossetti MV,

Zuccoli JR, et al. Role of ABCB1 and glutathione S-transferase gene

variants in the association of porphyria cutanea tarda and human

immunodeficiency virus infection. Biomed Rep. 2021;14(2):22.

Disponible en: https://doi.org/10.3892/br.2020.1398

De Castro ANCL, Fernandes MR, de Carvalho DC, de Souza TP, Rodrigues

JCG, Andrade RB, et al. Polymorphisms of xenobiotic-metabolizing

and transporter genes, and the risk of gastric and colorectal cancer

in an admixed population from the Brazilian Amazon. Am J Transl

Res. 2020;12(10):6626-36. Disponible en: https://doi.org/10.21203/

rs.2.14223/v1

Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, et al. Admixture in

Latin America: geographic structure, phenotypic diversity and selfperception

of ancestry based on 7,342 individuals. PLoS Genet.

;10(9):e1004572. Disponible en: https://doi.org/10.1371/

journal.pgen.1004572

Sandoval JR, Lacerda DR, Acosta O, Jota MS, Robles-Ruiz P, Salazar-

Granara A, et al. The Genetic History of Peruvian Quechua-Lamistas

and Chankas: Uniparental DNA Patterns among Autochthonous

Amazonian and Andean Populations. Ann Hum Genet. 2016;80(2):88-

Disponible en: https://doi.org/10.1111/ahg.12145

Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational

epigenetic inheritance. Nat Rev Genet. 2022;23(6):325-341.

Disponible en: https://doi.org/10.1038/s41576-021-00438-5

Bigham AW. Genetics of human origin and evolution: high-altitude

adaptations. Curr Opin Genet Dev. 2016;41:8-13. Disponible en:

https://doi.org/10.1016/j.gde.2016.06.018

Song W, Shi Y, Wang W, Pan W, Qian W, Yu S, et al. A selection pressure

landscape for 870 human polygenic traits. Nat Hum Behav.

;5(12):1731-1743. Disponible en: https://doi.org/10.1038/

s41562-021-01231-4

Pena SDJ, Santos FR, Tarazona‐Santos, E. Genetic admixture in Brazil.

Am J Med Genet C Semin Med Genet. 2020;184(4):928-938. Disponible

en: https://doi.org/10.1002/ajmg.c.31853

Han E, Carbonetto P, Curtis RE, Wang Y, Granka JM, Byrnes J, et

al. Clustering of 770,000 genomes reveals post-colonial population

structure of North America. Nat Commun. 2017;8:14238. Disponible

en: https://doi.org/10.1038/ncomms14238

Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. The genetic

ancestry of African Americans, Latinos, and European Americans

across the United States. Am J Hum Genet. 2015;96(1):37-53.

Disponible en: https://doi.org/10.1016/j.ajhg.2014.11.010

González-Medina L, Barquera R, Delgado-Aguirre H, Clayton S, Adalid-

Sáinz C, Arrieta-Bolaños E, et al. Genetic diversity of HLA system

in two populations from Durango, Mexico: Durango city and rural

Durango. Hum Immunol. 2020;81(9):489-491. Disponible en: https://

doi.org/10.1016/j.humimm.2019.06.005

Ziyatdinov A, Torres J, Alegre-Díaz J, Backman J, Mbatchou J, Turner

M, et al. Genotyping, sequencing and analysis of 140,000 adults from

Mexico City. Nature. 2023;622(7984):784–793. Disponible en: https://

doi.org/10.1038/s41586-023-06595-3

Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF,

Whaley R, et al. An evidence-based framework for evaluating

pharmacogenomics knowledge for personalized Medicine. Clin

Pharmacol Ther. 2021;110(3):563-572. Disponible en: https://doi.

org/10.1002/cpt.2350

Jin H, Zhang C, Zwahlen M, von Feilitzen K, Karlsson M, Shi M, et

al. Systematic transcriptional analysis of human cell lines for gene

expression landscape and tumor representation. Nat Commun. 2023

(1):5417. Disponible en: https://doi.org/10.1038/s41467-023-

-w

Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et

al. A pathology atlas of the human cancer transcriptome. Science.

;357(6352):eaan2507. Disponible en: https://doi.org/10.1126/

science.aan2507

Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, et

al. A single-cell type transcriptomics map of human tissues. Sci

Adv. 2021;7(31):eabh2169. Disponible en: https://doi.org/10.1126/

sciadv.abh2169

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu

A, et al. Proteomics: tissue-based map of the human proteome.

Science. 2015;347(6220):1260419. Disponible en: https://doi.

org/10.1126/science.1260419

Publicado

2025-09-11

Como Citar

1.
Salazar Granara AA, Sandoval Sandoval J, Barbosa Coelho E, Alvarado Yarasca Ángel, Marcos Carbajal P. Distribución de frecuencias del polimorfismo T1236C en el gen ABCB1 en las poblaciones peruanas y comparación con poblaciones de América, Asia, Europa y África. Horiz Med [Internet]. 11º de setembro de 2025 [citado 14º de setembro de 2025];25(3):e3755. Disponível em: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3755

Edição

Seção

Artigo original

Artigos mais lidos pelo mesmo(s) autor(es)